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Bounds and Estimates for Transport Coefficients of Random and Porous Media with

High Contrasts

James G. Berryman∗
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P.O. Box 808 L-200, Livermore, CA 94551-9900, USA

Bounds on transport coefficients of random polycrystals of laminates are presented, including
the well-known Hashin-Shtrikman bounds and some newly formulated bounds involving two
formation factors for a two-component porous medium. Some new types of self-consistent
estimates are then formulated based on the observed analytical structure both of these bounds
and also of earlier self-consistent estimates (of the CPA or coherent potential approximation
type). A numerical study is made, assuming first that the internal structure (i.e., the laminated
grain structure) is not known, and then that it is known. The purpose of this aspect of the
study is to attempt to quantify the differences in the predictions of properties of a system
being modelled when such organized internal structure is present in the medium but detailed
spatial correlation information may or (more commonly) may not be available. Some methods
of estimating formation factors from data are also presented and then applied to a high-contrast
fluid-permeability data set. Hashin-Shtrikman bounds are found to be very accurate estimates
for low contrast heterogeneous media. But formation factor lower bounds are superior estimates
for high contrast situations. The new self-consistent estimators also tend to agree better with
data than either the bounds or the CPA estimates, which themselves tend to overestimate values
for high contrast conducting composites.

PACS numbers: 44.30.+v,44.35.+c,47.55.Mh,41.20.Cv

I. INTRODUCTION

Effective medium theories have traditionally been for-
mulated using physical arguments to arrive at thought
experiments leading to definite predictions about the be-
havior of complex systems [1–4]. A small subset of these
formulations [5–7] has been shown to correspond to real-
izable (at least in principle) microstructures and, there-
fore, to the conclusion that these approximations should
always satisfy any rigorous bounds known for the phys-
ical constants. But, such realizability conditions are not

always easy to establish and are invariably subject to the
criticism [8] that, even though the implicit microstruc-
ture is realizable, it is nevertheless not the pertinent mi-
crostructure for the system we need to study either in
the laboratory or in the field. Such realizable effective
medium theories instead must typically have hierarchi-
cal microstructures [5], requiring many levels (often in-
finitely many in order to be space filling) for validity of
the required separation of scales.

On the other hand, bounding methods obviously have
the great advantage of rigor, but the disadvantage that,
for real material constants and at each fixed choice of
volume fraction, there are two numbers generated (upper
and lower bounds), while for complex material constants
(including both energy storage and dissipation), a closed
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curve in the complex plane describing the bounds is re-
quired (see, for example, [9–11]). But, for practical appli-
cations, users of such theories often want estimates rather
than bounds — even though estimates together with ad-
ditional measures of the probable range of errors in those
estimates are also clearly advantageous for many appli-
cations. Nevertheless, it seems certain that, if bounds
are available, then useful estimates can always be found.
Hill [12] resolved this dilemma famously by suggesting
the averaging (i.e., using either the mean or the geo-
metric mean) of the well-known Voigt and Reuss bounds
for elastic constants, thereby producing the very well-
known Voigt-Reuss-Hill estimates in elasticity [13, 14].
In other cases, known effective medium estimates have
already been shown to lie between the bounds, but in
fact if the analytical form of the bounds had been known
first, then in many cases these common estimates could
have very easily been deduced directly from the analyti-
cal form of the bounds [15].

The author has recently shown [16] how the Peselnick
and Meister bounds (on elastic constants for polycrys-
tals having grains with hexagonal symmetry [17]) ap-
plied to random polycrystals of laminates can be used to
provide both bounds and self-consistent estimates of the
shear modulus in the special case of heterogeneous elas-
tic media having constant bulk modulus. The present
paper will continue such studies in a different context
by considering transport coefficients, including electrical
conductivity, thermal conductivity, and fluid permeabil-
ity of porous media. Some newly formulated bounds on
conductivity [18] involving two formation factors for a
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two-component porous medium are also discussed and
used to estimate formation factors from data and then to
show that these lower bounds are superior to the Hashin-
Shtrikman lower bounds for transport properties at high
contrast.

The next section discusses and motivates the model
of random polycrystals of laminates that we are explor-
ing. Then Section III reviews some known bounds on
the transport coefficients and presents two derivations of
some new bounds available in porous media when for-
mation factor information is available. This section also
shows how to obtain information about formation fac-
tor from a data set if the formation factor itself has not
been measured independently. Section IV reviews some
standard estimates and presents some new ones based
on the analytical form of both bounds and some previ-
ous estimates. Section V presents and discusses some
numerical examples of applications of the estimates and
bounds, and also comparisons to high contrast fluid per-
meability data. Section VI summarizes our conclusions.
Appendix A discusses two methods of estimating forma-
tion factors from data, when none of the data happens to
lie in the asymptotic range (i.e., none is for very high or
very low conductivity constituents, which are the limits
best suited for direct formation factor estimates). Ap-
pendix B collects some details of the calculations needed
in the main text.

II. DESCRIPTION OF THE UP-SCALING

MODEL

One of the most common problems with all up-scaling
methods for heterogeneous media is that it is most diffi-
cult to know — especially in quantitative terms — just
how important various assumptions that are made dur-
ing the up-scaling procedure are to the final results ob-
tained. Clearly it is advantageous, but in the past has
seldom been practical, to have an up-scaling model that
provides natural means for estimating the range of errors
generated when using the resulting model. We are usu-
ally most fortunate to have either bounds or estimates
(by which we mean effective medium theory estimates)
that can be computed for a given data set. In only a very
limited number of cases do we have both bounds and esti-
mates. And the most popular estimates themselves may
not be consistent with the rigorous bounds in all cases.

With this dilemma in mind, we propose to make use of
the following model: Suppose that at the macroscale we
have an isotropic composite that is a random polycrys-
tal, i.e., an aggregate of randomly oriented crystals, each
of which has the same anisotropic effective constants for
elasticity, or electrical conductivity, or fluid permeabil-
ity, or whatever physical quantity we need to study. We
assume (for the purposes of model studies only, as we
have no reason to think this model represents any real
physical system, unless it has been specially engineered
to be so) that the crystals themselves are composed of

layers of isotropic materials. These crystals can come
in any size, and they may not be layered identically at
the microscale. But the model assumption is that each
crystal has the same anisotropic constants. When con-
sidering quasi-statics or long-wavelength behavior in elas-
ticity and also for transport coefficients, it is well-known
that it does not matter exactly what order the layers are
grouped in, or exactly how thick each layer is, etc. But
it does matter that, for each crystal that composes the
polycrystal, the corresponding volume fractions are the
same. Furthermore, these crystalline aggregates at the
mesoscale are assumed to be layered at a small enough
microscale so that sufficient scale separation is a good
assumption. This simply means that edge (or boundary)
effects at the interfaces between contiguous grains can be
safely neglected.

If we choose to do so, we can continue this hierarchy by
supposing that each of the isotropic layers is itself com-
posed of a very much finer microstructure. This next
level of hierarchy is actually important for some of the
modeling we have in mind. In particular for porous me-
dia, our aggregates composed of layers can have layer
constitutents that are porous and may in fact have flu-
ids in the pores. We will discuss this case briefly later
when we treat fluid permeability for these models, but
most of the work along this line – especially in elasticity
and poroelasticity of single- and double-porosity hetero-
geneous media [19, 20] – lies beyond our present scope.

The main point of this effort is to arrive at a set of
“models” – by which we mean “effective medium theo-
ries” – that are inherently consistent with all the known
rigorous bounds. Then we can compute our estimates
using these models, and at the same time make rigorous
statements about the range of errors likely to be encoun-
tered in practice. In fact there may be more than one
such model. In some cases we have found a set of closely
related models that are dependent on a parameter. Then,
if we can somehow characterize the influence and signifi-
cance of this model parameter, we may be able to make
intelligent choices of this “model” based on our limited
knowledge of the microstructure of the actual physical
system.

We explore these ideas here for transport coefficients.
In another paper, we explore fundamentally the same
ideas for elastic constants [21].

III. BOUNDS ON TRANSPORT COEFFICIENTS

A. Review of some bounding methods

Because the mathematical structure of the equations is
identical, various physical mechanisms such as (for three
examples) thermal conductivity, electrical conductivity,
and fluid permeability in porous media all require essen-
tially identical treatment at the meso- and macroscales.
To emphasize universality, we will not distinguish among
these applications as we present this rather general model
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study. We will use the symbol σ for conductivity, and
we will not specify further which type of conductivity
is being considered until later when we consider specific
laboratory data on fluid permeability.

Hashin-Shtrikman bounds [22] on conductivity for a
multicomponent composite material are well-known to
be

σ±

HS =

[

N
∑

n=1

fn

σn + 2σ±

]−1

− 2σ± ≡ Σ(2σ±), (1)

where σn is the conductivity in the nth component (nth
layer of the laminate) and σ± are the largest and smallest
values of these N conductivities. The second part of
Eq. (1) is also taken as the definition of the canonical
function Σ for the uncorrelated bounds (and estimates).
These bounds are generally improvements on the mean
and harmonic mean bounds:

σM =

N
∑

n=1

fnσn and σH =

[

N
∑

n=1

fn

σn

]−1

. (2)

For the locally layered aggregate composing the grains of
our model, conduction along the symmetry axis is just
the series result σH , while conduction perpendicular to
the symmetry axis is just the parallel result σM . These
values also correspond to the three eigenvalues of the 3×3
conductivity matrix (occurring once for σH and twice for
σM ).

For random polycrystals, there are further results for
conductivity that have been reviewed by Helsing and
Helte [23]. In particular, the Hashin-Shtrikman bounds
[24] for such random polycrystals are determined by

σ±

HSX = ΣX(2σ±), (3)

where the canonical function ΣX for the correlated
bounds (and estimates) when applied to correlated (in
this case hexagonal crystalline systems) is defined by

ΣX(2σ±) =

[

1

3

(

1

σH + 2σ±

+
2

σM + 2σ±

)]−1

− 2σ±,

(4)
and where σ+ = σM and σ− = σH . But these are not
the most general bounds since they rely on an implicit
assumption that the grains are equiaxed.

A more general lower bound that is known to be opti-
mal is due to Schulgasser [25] and Avellaneda et al. [26]:

σ−

ACLMX = ΣX(σ−

ACLMX/2). (5)

Note that this bound is usually not written this way (but
nevertheless it is not hard to show that this is a correct
representation of this bound). We present it this way,
in part, because this form emphasizes the analytical sim-
ilarity of (3) and (5), and it is also convenient for our
later efforts at formulating estimates. Note furthermore
that the lower Hashin-Shtrikman bound σ−

HSX and the

Avellaneda et al. bound σ−

ACLMX actually cross at the

value σM/σH = 10 — with σ−

ACLMX being optimal for

higher values of the ratio σM/σH and σ−

HSX being for op-
timal for lower values of the ratio, whenever the equiaxed
grains assumption is pertinent.

When the values σM and σH are treated as the mea-
sured values of the conductivity normal and parallel to
the symmetry axis of the laminated grains, there are
also mean and harmonic mean bounds available based
on these values:

σMX =
1

3
(σH + 2σM ) , (6)

and

σ−1
HX =

1

3

(

σ−1
H + 2σ−1

M

)

. (7)

Of course, these values are less restrictive than the
Hashin-Shtrikman bounds, and in fact can be obtained
from the canonical function ΣX in (4) by letting the ar-
gument go to ∞ or zero, respectively.

B. Formation factor bounds

1 Derivation of FF bounds

The Bergman-Milton [27–34] analytical approach to
understanding some general effective transport coefficient
σ∗ of two-component inhomogeneous media shows that

σ∗ = S(σ1, σ2) = σ1S(1, 0) + σ2S(0, 1) +

∫ ∞

0

dxS(x)
1
σ1

+ x
σ2

,

(8)
where S(1, 0) and S(0, 1) are constants depending only on
the geometry and S(x) ≥ 0 is a resonance density func-
tional also depending only on the geometry. The integral
in (8) is known as a Stieltjes integral [35]. Although the
representation (8) has most often been employed to study
the behavior of σ∗ in the complex plane when σ1 and
σ2 are themselves complex (corresponding to mixtures
of conductors and dielectrics), we will restrict consider-
ation here – as Bergman did in his early work [27] – to
pure conductors so that σ1, σ2, and σ∗ are all real and
nonnegative.

In the limit when one or the other of the two con-
stituents is a perfect insulator (σi = 0 for i = 1, 2), or in
the more common case when one of the constituents is
much more strongly conducting than the other, we can
define two quantities called formation factors [36] by

lim
σ1→∞

σ∗

σ1
= lim

σ1→∞
S(1, σ2/σ1) = S(1, 0) =

1

F1
, (9)

and, similarly, by

lim
σ2→∞

σ∗

σ2
= lim

σ2→∞
S(σ1/σ2, 1) = S(0, 1) =

1

F2
. (10)
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In a porous material, where solid and pore fluid are each
continuously connected throughout the material, both
formation factors are finite, and both satisfy F ≥ 1. The
more commonly measured quantity of this type is the
electrical formation factor for the continuous fluid com-
ponent. This measurement may have some complications
due to surface conductance [37, 38], but it is usually not
contaminated by conductance through the bulk solid ma-
terial because most rock grains can be correctly assumed
to be electrically insulating to a very good approxima-
tion. Since the formation factor is strictly a measure of
the microgeometry of the heterogeneous medium, it is the
same number (except for those possible complications al-
ready mentioned of surface electrical conduction [37, 38],
which can be eliminated whenever necessary by known
experimental and data processing methods) for all math-
ematically equivalent conductivities. For this presenta-
tion, we will use F1 to represent this formation factor
associated with the pore space. On the other hand, for
thermal conduction the rock grains are the most highly
conducting component and the pore fluids tend to be
much more poorly conducting – especially so in the case
of saturating air. So, for problems of electrical and ther-
mal conduction, we will take F2 to be this formation
factor associated with the solid frame of the porous ma-
terial.

To obtain some useful bounds, we again consider the
form of (8), now making use of (9) and (10),

S(σ1, σ2) =
σ1

F1
+

σ2

F2
+

∫ ∞

0

dxS(x)
1
σ1

+ x
σ2

. (11)

For reasons that will become apparent later, we want
to compare the values of S(σ1 + 2σ0, σ2 + 2σ0) and
S(σ1, σ2) + 2σ0, where σ0 can take any positive value.
But σ0 is limited in the negative range by the restric-
tions that both σ1 + 2σ0 and σ2 + 2σ0 must always be
nonnegative. A straightforward, but somewhat tedious,
calculation shows that

S(σ1 + 2σ0, σ2 + 2σ0) − S(σ1, σ2) − 2σ0 =

2σ0(σ2 − σ1)
2
∫ ∞

0
dxxS(x)

(1+x)(σ2+xσ1)[σ2+xσ1+2(1+x)σ0]
.

(12)
The right hand side of this equation is always positive
whenever σ0 > 0 and σ1 6= σ2. It vanishes when either
σ0 = 0 or σ1 = σ2. If σ1 < σ2, then for negative values
of the parameter σ0, allowed values of σ0 lie in the range
0 > 2σ0 ≥ −σ1. For these values of σ0, the right hand
side of (12) is strictly negative.

The limiting case obtained by taking 2σ0 → −σ1 is
most useful because, in this limit, S(σ1+2σ0, σ2+2σ0) →
(σ2−σ1)/F2 — thus eliminating the unknown functional
S(x) from this part of the expression. Then, (12) shows
that

S(σ1, σ2) ≥ σ1 +
σ2 − σ1

F2
≡ Q2(σ1, σ2), (13)

which is a general lower bound on S(σ1, σ2) without any
further restrictions on the measurable quantities σ1 ≤ σ2,
and F2.

A second bound can be obtained (again in the limit
2σ0 = −σ1) by noting that

∫ ∞

0

dxxS(x)

(1 + x)(σ2 + xσ1)
≤

∫ ∞

0

dxS(x)

σ2 + xσ1
, (14)

and then recalling [see (11)] that

∫ ∞

0

dxS(x)

σ2 + xσ1
=

1

σ1σ2

[

S(σ1, σ2) −
σ1

F1
− σ2

F2

]

. (15)

Substituting (14) into (12) produces an upper bound on
S(σ1, σ2). By subsequently substituting (15) and then
rearranging the result, the final bound is

S(σ1, σ2) ≤ σ2 +
σ1 − σ2

F1
≡ Q1(σ1, σ2). (16)

Comparing (13) and (16), we see consistency requires
that

σ1 +
σ2 − σ1

F2
≤ σ2 +

σ1 − σ2

F1
(17)

must be true. Rearranging this expression gives the con-
dition

0 ≤ (σ2 − σ1)

(

1 − 1

F1
− 1

F2

)

, (18)

the validity of which we need to check. In the limit σ1 =
σ2 = 1, a sum rule follows from (11), and from this we
have:

1 − 1

F1
− 1

F2
=

∫ ∞

0

dxS(x)

1 + x
≥ 0. (19)

This shows explicitly that (18) is always satisfied as long
as σ2 ≥ σ1. If the inequality σ2 ≥ σ1 does not hold,
then the sense of the bounding inequalities is reversed,
so the expressions for the upper and lower bounds are
interchanged.

When σ2 = const and σ1 varies (as would be expected
in a series of either electrical or thermal conductivity ex-
periments with different conducting fluids in the same
porous medium), then (13) and (16) are both straight
lines that cross at σ1 = σ2. The general bounds are
therefore

min(Q1, Q2) ≤ S(σ1, σ2) ≤ max(Q1, Q2), (20)

where Q1 and Q2 were defined in (13) and (16).
A second derivation of the same bounds may provide

additional insight into their significance. Again starting
from (11), this time we will go directly to the integral
term and start making approximations to it. First, con-
sider

∫ ∞

0

dxS(x)
1
σ1

+ x
σ2

= σ1

∫ ∞

0

dxS(x)

1 + xσ1

σ2

≥ σ1

∫ ∞

0

dxS(x)

1 + x
,

(21)
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where the inequality holds whenever σ1 ≤ σ2. Then,
similarly, we have

∫ ∞

0

dxS(x)
1
σ1

+ x
σ2

= σ2

∫ ∞

0

dxS(x)
σ2

σ1

+ x
≤ σ2

∫ ∞

0

dxS(x)

1 + x
, (22)

again whenever σ1 ≤ σ2. We can then make use of the
identity in sumrule (19) to replace the integral on the far
right in both of these expressions. And, finally, applying
(21) to (11) gives exactly the lower bound (13), while
applying (22) to (11) gives exactly the upper bound (16).
All the same comments about reversal of the sense of the
inequalities apply here if instead σ1 ≥ σ2. So, the final
result is again (20).

This approach has the advantage that it is clear from
the derivation of the inequalities (21) and (22) exactly
what approximations have been made in each case to
arrive at the bounds on S(σ1, σ2).

Note that there is also another rather obvious lower
bound on S(σ1, σ2) obtainable from (11) by simply drop-
ping the integral term involving S(x). Although this
bound has the same asymptotic behavior as min(Q1, Q2),
it is easy to see (using the same arguments already
presented) that this lower bound is always inferior to
min(Q1, Q2) (and especially so when σ1 ' σ2), thus we
need not consider it any further here.

The FF bounds are useful in their own right, but will
also be relevant to our model of random polycrystals of
laminates in two quite different ways: (1) Assuming a
single-phase fluid is present in the pores of a layered
porous medium, each layer can be treated as if it has a
definite permeability associated with it. If there are only
two types of these layers, then for an isotropic random
polycrystal the FF bounds are pertinent to estimates of
the overall permeability of such a system [34]. For these
purposes, it is not important whether the layers them-
selves have the same or quite different solid materials
composing layers and frame. (2) In contrast, for electri-
cal or thermal conductivity, the single-phase fluid is one
of the conductors, while the solid material must be the
other. Since these bounds are valid for systems having
only two conductors present, they can only be used in
such cases for estimating the properties of the individual
layers of this model — not for the overall transport prop-
erties of the macroscale system. So, in the context of the
random polycrystals of laminates model, FF bound are
most important for the fluid permeability application —
which (fortunately) is one of our main interests.

Appendix A discusses two methods of determining for-
mation factors from data, one method based on the for-
mation factor bounds themselves and another using a
data differencing technique.

2 Application of FF bounds

Warren and Price [39] presented a sophisticated data
set that is pertinent to our problem and that can be an-
alyzed quite easily using the formation factor bounds.
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FIG. 1: Rigorous bounds on fluid permeability data of War-
ren and Price [39] obtained using the upper and lower forma-
tion factor bounds from this work, and the upper and lower
Hashin-Shtrikman bounds [22]. For X1 data, k2/k1 ' 1000.0;
for X2 data, k2/k1 ' 50.0; for X3 data, k2/k1 ' 8.0.

The physical model was composed of a 9 × 9 × 9 cube,
containing 93 = 729 porous blocks. Each of these blocks
had a well-defined permeability, being approximately one
of the four values: 1, 8, 50, 1000 (units unspecified).
The smallest permeability was always a constituent of
the random porous composite, but the remaining volume
filler was always chosen from just one of the other three
types. So there were three distinct binary (X/Y) compos-
ites studied: 8/1, 50/1, and 1000/1. Furthermore, there
were only four distinct volume fractions used, and these
came in pairs: one pair being f1 = 0.088 and f1 = 0.912
and the other pair being f1 = 0.441 and f1 = 0.559.
Since these pairs sum to unity, this means that to a very
good approximation the two relevant formation factors
were effectively interchanged within each of these types
of data sets, each porous component being occupied in an
X/Y composite once by X and once by Y . This means
that phase interchange relationships [40, 41] can also be
tested within the context of this experiment, if so desired.

Bounds obtained by first estimating the F1 and F2

formation factors from the Warren and Price data (see
Table 1) are illustrated in Figure 1 along with the up-
per and lower Hashin-Shtrikman bounds for comparison.
The Hashin-Shtrikman bounds depend only on known
volume fractions and constituent conductivities. Figure
1 clearly shows that the Hashin-Shtrikman bounds pro-
vide fairly tight upper bounds all the time. The HS lower
bounds are best at low values of the permeability ratio
k2/k1. They diverge from the data at higher values, as
they must since they do not incorporate the fact that
the formation factors of both components are finite. The
formation factor bounds on the other hand give excellent
results for the lower bounds at all values of k2/k1. In
fact they agree exactly in this case with the measured
values for the highest value of k2/k1, which is of course
unrealistic, but a natural result of the way the forma-
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tion factors were themselves estimated from this data
set. The true formation factor F2 is actually just slightly
larger than the lower bound given in Table 1. But, since
k2/k1 ' 1000.0, we assume that the error made here is
small, and also of the same order as the experimental
errors in these measurements.

IV. ESTIMATES FOR TRANSPORT

COEFFICIENTS

A. Standard estimates

Two geometric means of interest for conductivity of
the random polycrystals of laminates model are:

σG1 =
N
∏

n=1

σfn

n , (23)

which is the geometric mean based on the volume frac-
tions fn, and

σG2 =
(

σHσ2
M

)1/3
, (24)

which is the geometric mean based on measurements of
the principle conductivities of the individual anisotropic
grains making up the polycrystalline composite. Clearly,
σG1 takes no account of the fine structure of the medium,
and should be thought of as an uncorrelated estimate,
while σG1 does take account of the fine structure and is
therefore a correlated estimate.

Coherent potential approximations (CPA) [42] or self-
consistent estimates [3, 4, 43, 44] are easily obtained from
(1) and (3). Because the functionals involved in the state-
ment of the bounds are very well-behaved — being mono-
tonic functions of their scalar argument, it is easy to show
that some intermediate value of the conductivity sought
must exist that has the same value (usually within some
scalar constant value, which in this case is 2) as the argu-
ment of the functional. The uncorrelated CPA estimate
is then given by

σ∗

CPA = Σ(2σ∗

CPA). (25)

Similarly, the correlated CPA estimate for random ag-
gregates of hexagonal crystals is [23]

σ∗

CPAX = ΣX(2σ∗

CPAX). (26)

B. A new class of estimators

Comparing the lower bound (5) and the CPA estimate
(26), we see that they share the functional relationship

σ∗

X(P ) ≡ ΣX(Pσ∗

X(P )), (27)

with P = 1/2 for the rigorous lower bound (5) and P = 2
for the CPA estimate (26). It seems clear from prior work

(and we will show this here in some detail) that a new
class of approximations or estimates can be obtained by
permitting the parameter P to span the range 1/2 ≤ P ≤
2. We have found that P ' 1 is one useful intermediate
choice, and that this choice seems to agree well with data
at least as well as the choice P = 2 justified by using the
CPA. Clearly, (27) also automatically has the sought for
characteristic that it always produces estimates inside
the known rigorous bounds for these correlated media as
long as 1/2 ≤ P ≤ 2.

We can also consider a similar estimator for

σ∗(P ) ≡ Σ(Pσ∗(P )), (28)

for isotropic random composites composed of “uncorre-
lated” isotropic constituents. In this case, the best sim-
ple lower bound having the correct functional form is the
Hashin-Shtrikman bound [22]

σ∗ ≥ σ−

HS = Σ(2σ−). (29)

Thus, because of the monotonicity properties of Σ, (28)
will always lie between the rigorous bounds if 2σ− ≤
Pσ∗(P ) ≤ 2σ∗

CPA, since the CPA estimator is always
within the bounds, and very often a high estimator (con-
sistently too high) for real data.

Since it is known that the correlated bound σ−

ACLMX
crosses the Hashin-Shtrikman lower bound, it is reason-
able to expect the same might happen with our uncorre-
lated estimator. In fact it is not hard to show that when
one conductivity is much greater than the other so that
σ+ � σ−, then

σ−

HS ' σ−(3 − 2f−)

f−
(30)

and

σ∗(P ) ' σ−

[f−(1 + P ) − P ]
. (31)

Equating these expressions, we find that the two cross at
the points

f− =
3

4
and 1 for P = 1, (32)

and

f− =
1

2
and 1 for P =

1

2
. (33)

Thus, for high contrast transport problems, we expect
these two curves to cross when the high conductivity ma-
terial occupies about 25% of the total volume for P = 1
and at about 50% for P = 1/2.

Numerical examples are presented in the following sec-
tion. Some other details of the behavior of both of the
new estimators are presented in Appendix B.
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FIG. 2: Uncorrelated bounds and estimates on conductivity
assuming that volume fraction information is available, but
it is not known that the medium is composed of laminated
grains. Two geometric means [G1 and G2 – see Eqs. (23) and
(24)] are presented to permit some direct comparisons with
Figure 2. Here Model means (28) with P = 1, and ACLMφ

means the same equation with P = 1/2.

V. EXAMPLES AND DISCUSSION

A. Random polycrystals of laminates

Figures 2 and 3 summarize the relationships among
the various bounds and effective medium estimators dis-
cussed already in the text. Figure 2 shows explicitly how
the various estimators perform as a function of volume
fraction for the random polycrystals of laminates model.
The geometric mean G1 [Eq. (23)] is a straight line across
this log-linear plot. This geometric mean has sometimes
been claimed to be a very good estimator of some types of
data [39, 45]. This plot shows that it is true that G1 falls
in the middle of the group, and this is reasonable if the
medium is in fact essentially uncorrelated in space. But,
in contrast, Figure 3 shows in a very startling way that
when significant correlations are present, the mean G1 is
a very poor estimator, as it lies below the lowest bound
plotted here over most of the range of the plot. Thus,
G2 [Eq. (24)] is the better estimator of these geometric
means — at least for this correlated case.

The models ACLMφ (P=1/2) and Model (P=1) used
in Figure 2 both fall below the lower Hashin-Shtrikman
bound in the range of volume fractions f− > 1/2 and
f− > 3/4, respectively, and so they might not be con-
sidered useful in this region. However, the quantitative
differences in this range for P = 1 are actually very small
(on the order of the line width as seen later in the Figure
4), and also very close to the data. So this theoretical
flaw may be considered negligible for some purposes of
data comparison. The CPA is always inside the Hashin-
Shtrikman bounds, but it is generally quite a bit higher
than the geometric mean G1 for most of the range of the
high range volume fractions, and therefore is certainly

0 5 10 15 20
0

5

10

15

20

25

σ
M

/σ
H

σ* /σ
0

MX
HSX+

CPAX
G1
ModelX
G2
ACLMX
HSX−

HX

FIG. 3: Same as Figure 2 for correlated bounds and esti-
mates based on random polycrystalline microstructure for-
mulas. For this Figure it is assumed that the volume frac-
tions of the microstructural components are unknown, but
measurements have been made instead on the conductivities
parallel and perpendicular to the symmetry axis of a typical
(laminated) grain. All calculations here differ from those of
Figure 2 except for the two geometric means, both of which
are exactly the same values as those plotted in Figure 2. Here
ModelX means (27) with P = 1, and ACLMX means the same
equation with P = 1/2.

not going to agree with data that are seen to lie close to
the geometric mean G1. The compromise using P = 1
seems to be the best choice of a model in the absence of
information about spatial correlations, but it can be re-
placed by the HS lower bound if desired below f+ = 0.25
as seen in this Figure.

For correlated media of the type under consideration
here, Figure 3 shows that ModelX (P=1) falls nicely be-
tween the CPAX and ACLMX curves as it should, and
is also a fair approximation to the G2 geometric mean,
which also falls within the same domain.

B. Fluid permeability data comparisons

Figure 4 presents a theory-to-data comparison for the
Warren and Price [39] data set on fluid permability. Al-
though arguments of Warren and Price seem to favor the
geometric mean G1 as a general descriptor of these types
of data, we see that G1 is only very crudely measuring
the behavior over the full range of volume fraction. The
CPA and Mod (P=1) estimators both do a much bet-
ter job of following the trends in the data, than does
G1. But CPA is again observed to be too high essen-
tially all of the time. The choice P = 1 seems to be the
more conservative estimator, being about right at the ex-
tremes of volume fraction, and somewhat too low for the
mid-region. This suggests that a better estimator might
involve nonconstant choices of P , being close to unity at
the extremes of volume fraction and somewhere between
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FIG. 4: Fluid permeability data of Warren and Price [39] are
compared to various models: (1) the geometric mean G1 de-
fined in Eq. (23), (2) the CPA self-consistent effective medium
theory with P = 2, and (3) the new model with the different
parameter choice P = 1. The geometric mean gives only very
crude agreement except for the case k2/k1 ' 8.0, where all
three medthods do about equally well. In general the CPA is
too high. The new model does seem to capture most of the
overall trend in the data in all three example data sets, espe-
cially so at the extremes of volume fraction; but the model is
generally too low in the mid-region.

1 and 2 in the middle range.
To provide some physical justification for this new

model, consider that choosing P 6= 2 provides a means of
taking into account imperfections in the heterogeneous
medium. It is known [4] that for resistor networks the
factor equivalent to P in the standard CPA approxima-
tion actually depends on the coordination number z at
every node: so P = z/3 − 1. Typically, z = 6 in 3D, so
P = 2. If the coordination number is less than six, as
it typically would be in two dimensions, or if there are
defects in the network, then an overall effective value of
P less than 2 is expected. So we might take the best fit-
ting value of P when trying to fit data with such a model
as a measure of the defects in the heterogeneous (or, in
the Warren and Price case, porous) medium being stud-
ied. For very discrete models like the ones constructed
in the laboratory by Warren and Price, we expect there
to be more defects of this type at the high and low vol-
ume fractions because it is easier for individual blocks of
the minority constituent to be completely surrounded by
those of the majority constituent. In the middle range
of volume fraction, this sort of complete isolation (a type
of localization effect) of one of the block types proba-
bly happens only very rarely. So this argument provides
one possible physical reason for the observed behavior in
these porous materials in the mid-range of volume frac-
tions.

VI. CONCLUSIONS

In the history of studies of heterogeneous media, the
very earliest work on electrical, elastic, and viscous media
[1–3, 46–48] involved ad hoc procedures intended to pro-
vide sensible estimates of the physical constants of inter-
est in such systems. Much later, work on bounding meth-
ods first showed that some of the known estimates were
in fact rigorous bounds [12] and subsequently produced
quite accurate and useful bounds [49, 50] that were then
proven to be optimal in the sense that for certain spe-
cial classes of microstructures the bounding values could
be attained. Later still it was established that certain
choices of these ad hoc estimates (or effective medium
theories) had special relationships to the bounds [5–7].
In particular, some of these estimates were shown always
to lie between the rigorous upper and lower bounds on
the material constants [5–7, 51, 52].

Rigorous bounds designed to improve on mean
and harmonic mean bounds, and/or Hashin-Shtrikman
bounds usually require some knowledge of the mi-
crostructure of the composite. One common (usually
theoretical) method of quantifying the microstructure
is by specifying/measuring spatial correlation functions
[53–55]. But other methods are possible, and some-
times more practical. As emphasized here, the formation
factor bounds incorporate the microstructural informa-
tion about a porous medium in a very different way, yet
produce useful bounds — comparable to and in some
cases (especially for high contrast media) improving on
the Hashin-Shtrikman bounds. If both formation factors
in a two-component composite are finite, then at least
some paths are percolating (connected) throughout the
medium for both constituents. This fact is a powerful
theoretical, and very practical quantitative, statement
about the microstructure and, in particular, about the
long-range order of the composite.
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Table 1. Lower bounds on the formation factors F1

and F2 in the fluid permeability data of Warren and
Price [39], as determined by using the formation factor

bounds. Volume fractions of the porous component
number 1 are given by f1.

f1 F−

1 F−

2

0.088 3966.0 1.343

0.441 17.830 5.264

0.559 5.264 17.830

0.912 1.343 3966.0

APPENDIX A: ESTIMATING FORMATION

FACTORS FROM DATA

Two methods of estimating formation factors from
data are presented here: One uses the formation fac-
tor bounds to estimate the formation factors present in a
data set. This approach has been found to be quite useful
for small data sets (an example is shown here in Figure
1). The second method is a data differencing method.
This method is not as good for small data sets as the for-
mation factor bounding approach, but for large data sets
it provides a methodical means of eliminating the influ-
ence of the resonance density functional on the formation
factor estimator.

A.1: Using formation factor bounds

When the formation factors have been measured, the
formation factor bounds supply estimates (upper and
lower bounds) on the expected values of the conductiv-
ities of the system as the component conductivities are
varied. When the formation factors have not been mea-
sured independently, they can also be estimated from
other data using these same bounds.

From Eqs. (13) and (16), we can easily infer (assuming
only σ2 > σ1) that

F2 ≥ σ2 − σ1

S(σ1, σ2) − σ2
, (34)

and similarly

F1 ≥ σ2 − σ1

σ2 − S(σ1, σ2)
. (35)

These bounds can then be applied in turn to each mea-
sured data point S(σ1, σ2). Having done this to the entire
data set, then the largest value in each case is the pre-
ferred lower bound on the formation factor. This process
has been carried through on the Warren and Price data

set [39] and the results obtained are quoted in Table 1.
These values were then used to produce the formation
factor bounds shown in Figure 1.

A.2: Data differencing scheme

Suppose we have just three independent measurements
of the conductivity S(σ1, σ2), for fixed σ1 and the values
σA

2 , σB
2 , σC

2 for the second conductivity variable. Then,
from (11) it is easy to show that

σC

2
S(σ1,σB

2
)−σB

2
S(σ1,σC

2
)

σC
2
−σB

2

=
σ1

F1

+ σ1

∫ ∞

0
dxS(x)

(1+xσ1/σB
2

)(1+xσ1/σC
2

)
.

(36)

The advantage of this formula is that the integral now
contains a second positive factor in the denominator that
tends to reduce the influence of this contribution to the
right hand side. When there are three measurements,
there are three such first order differences available. But
in addition there is also one second order difference avail-
able, namely:

σA
2

σC

2
S(σ1,σB

2
)−σB

2
S(σ1,σC

2
)

(σA
2
−σC

2
)(σC

2
−σB

2
)

−σC
2

σA

2
S(σ1,σB

2
)−σB

2
S(σ1,σA

2
)

(σA
2
−σC

2
)(σC

2
−σB

2
)

=
σ1

F1

+ σ1

∫ ∞

0
dxS(x)

(1+xσ1/σA
2

)(1+xσ1/σB
2

)(1+xσ1/σC
2

)
.

(37)

For this expression the integral contribution has clearly
been reduced more than for the first order differences.
The reduction achieved this way is greatest when the
various ratios σ1/σA

2 , etc., are as large as possible. So
either small values or many values of σ2 are most use-
ful for the application of this method. Neither of these
options was available in the Warren and Price [39] data
set, so this method (although it was tried) did not turn
out to be as useful as the formation factor bounding
method described already. Note also that this method
produces only estimates for F1, whereas the formation
factor bounds produce estimates for both F1 and F2.

Clearly this process of magnitude reduction can also
be continued when more than three data values are avail-
able. With many data values, this method should become
viable for estimating F1.

APPENDIX B: EXAMPLES OF σ∗

X(P ) AND σ∗(P )

Two types of new estimators are considered: first, the
estimator σ∗

X(P ) for random polycrystals and, second,
the estimator σ∗(P ) for random composites of isotropic
constituents. These estimators are both guaranteed to
lie between the bounds if certain restrictions are placed
on the parameter P : for σ∗

X , 1/2 ≤ P ≤ 2, while, for σ∗,
the requirements are 2σ− ≤ Pσ∗ ≤ 2σ∗.
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B.1: Random polycrystal estimators

Formula (27) for the correlated σ∗
X(P ) may be rewrit-

ten as

1

σ∗
X

= (1 + P )
1

3

(

1

σH + Pσ∗
X

+
2

σM + Pσ∗
X

)

. (38)

It is easy to see that this is just a quadratic equation for
σ∗

X . The general solution of this equation is

σ∗

X =
1

2P

(

−ZX ±
√

Z2
X + 4PσHσM

)

, (39)

where

ZX =
1

3
[(1 − 2P )σM + (2 − P )σH ] . (40)

An important special case is

P ≡ 2σH + σM

σH + 2σM
, (41)

which gives precisely ZX = 0 and σ∗
X =

√

σHσM/P .
Note that P ≤ 1 when it is given by (41), so σ∗

X ≥√
σHσM for this special case.
Assuming σH � σM , some examples of approximate

evaluations of (39) are:

σ∗

X '
√

σHσM/P + O(σH) for P =
1

2
, ZX ' O(σH ),

(42)

σ∗

X ' σM

3
+ O(σH) for P = 1, (43)

σ∗

X ' σM

2
+ O(σH) for P = 2. (44)

Without restrictions on σH ,

σ∗

X → 1

3
(σH + 2σM ) for P → ∞, (45)

which is the same as σMX . It also follows immediately
from (38) that

σ∗

X →
[

1

3

(

1

σH
+

2

σM

)]−1

for P → 0, (46)

which is σHX .

B.2: Estimators for random composites of isotropic

constituents

By analogy to the definition of the estimator σ∗
X(P ),

we also define the corresponding concept for uncorrelated
random heterogeneous media composed of isotropic con-
stituents: σ∗(P ).

This estimator can be defined for an arbitrary number
of constituents. But to maintain, and also emphasize,
the analogy to the previous case, we will restrict the dis-
cussion here to just two constituents. Formula (28) for
the uncorrelated estimator σ∗(P ) may then be rewritten
as

1

σ∗
= (1 + P )

(

f1

σ1 + Pσ∗
+

f2

σ2 + Pσ∗

)

. (47)

It is easy to see that, like (38), this is just a quadratic
equation for σ∗. The general solution of this equation is

σ∗ =
1

2P

(

−Z ±
√

Z2 + 4Pσ1σ2

)

, (48)

where

Z = [(f1 − f2P )σ2 + (f2 − Pf1)σ1] . (49)

Again, an important special case is found to be

P ≡ f1σ2 + f2σ1

f1σ1 + f2σ2
=

σ1σ2

< σ >< 1/σ >−1
, (50)

which gives precisely Z = 0 and σ∗ =
√

σ1σ2/P =√
σHσM .
Assuming σ1 � σ2 and f1 6= f2, some examples of

approximate evaluations of (48) are:

σ∗ = 1
2P

[

√

(1 − P )2σ2
1 + 4Pσ1σ2 − (1 − P )σ1

]

'
√

σ1σ2/P + O(σ1) for P = f1

f2

, Z = (1 − P )σ1,

(51)

σ∗ =
√

σ1σ2 + (f1 − f2)2(σ1 − σ2)2/4
−(f1 − f2)(σ2 − σ1)/2 for P = 1,

(52)

and

σ∗ = 1
2P

[
√

(1 − P )2σ2
2 + 4Pσ1σ2 − (1 − P )σ2

]

for P = f2

f1

, Z = (1 − P )σ2.
(53)

All three of these estimators give exactly the geometric
mean

√
σ1σ2 when f1 = f2, so P = 1. Otherwise, all

three of these estimators depend strongly on f1 and f2,
and in particular two depend on the sign of 1 − P .

Without restrictions on σ1,

σ∗ → (f1σ1 + f2σ2) for P → ∞, (54)

which is < σ >= σM . It also follows immediately from
(47) that

σ∗ →
(

f1

σ1
+

f2

σ2

)−1

for P → 0, (55)

which is < 1/σ >−1= σH .
Discussion of the significance of the various P values

relative to the rigorous bounds is given in the main text.
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